

Strategic overview

Phil Caldwell

2050 demand for hydrogen

^{(1):} Global Hydrogen Flows, Hydrogen Council 2022

22%

^{(2):} The staggering cost of a green hydrogen economy, Financial Times May 2023

3,585GW

IEA estimate of electrolyser capacity needed by 2050

1GW cumulative installations today

Indicative 2030 project costs for 1MT of green hydrogen

Assumptions used in calculations: Electrolyser System Installed CapEx: \$600/kW; Wind:Solar ratio: 67:33; Renewable Capacity factor: 53%; Electrolyser Capacity Factor: 90%; *References for renewable energy cost and efficiencies: Renewable power generation costs in 2021 (irena.org); Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5C climate goal (irena.org)

Technology platform to address decarbonisation

Multi gigawatts of manufacturing capacity under licence with global partners by 2030

Future focused technology organisation

Caroline Hargrove

Fuel cells for power and electrolysers for green hydrogen

Technology platform to address decarbonisation

Modular scale-up concept

Cell Stack Stack array Module Plant 30-150W 10-50 kW 100-500 kW 1-5 MW GWs

Industrial de-carbonisation of green steel, green ammonia, e-fuels. Chemicals, oil and gas

Continued improvement of cell and stack technology

Ceres building a protected patent portfolio

Technology innovation at cell, stack and system

TECHNOLOGY

DIGITALISATION

University partnerships support cutting edge research

Technology innovation by design

Research and innovation Technology maturation New product introduction

Highly differentiated technology

Subhasish Mukerjee

Solid oxide is a fully reversible technology

AIR

AIR

World-class performance

Highest efficiency
Most durable
Most robust
Fuel flexible

Low-cost, sustainable materials

Why solid oxide offers the highest efficiency

Ceres stacks operate at:

- 100% electrical efficiency
- Using a third less energy compared to low temperature electrolysers

Heat drives efficiency in electrolyser mode

SOEC intrinsic thermodynamic advantage

Thermoneutral operation offers maximum efficiency

Constant hydrogen output by increasing temperature through life

Robustness to thermal cycling

Robust due to metal support, electrode and low temperature

Metal supported technology highly differentiated

Highest efficiency
Cost-efficient
Durable and robust

Scalable solution

Modular design that scales up to market

Jon Harman

SOEC technology maturation and demonstration approach

SOEC module demonstrated at 38kWh/kg

Specification

Target value

Electrical power input

~100kW

Hydrogen production

65kg per day

Module efficiency

38kWh/kg

Steam input

150°C

SOEC

Collaboration with Bosch and Linde Engineering

BOSCH

Bosch has significant expertise in product industrialisation and mass manufacturing.

Linde Engineering has world-leading capabilities in hydrogen process technology and a global customer footprint in industrial facilities.

Roadmap to first commercial deployments

Modular scale-up concept

Cell 100-150W Stack 30-45 kW Stack array 360-540 kW

Module 2-3 MW Plant GWs

Industrial decarbonisation of green steel, green ammonia, e-fuels. Chemicals, oil and gas

SOEC module product concept

Levelised cost of hydrogen

USD/kg

Indicative 2030 project costs

For 1MT of green hydrogen

	Low temp	SOEC target	
	System Efficiency 50 kWh/kg*	System Efficiency 37 kWh/kg*	
Green hydrogen production Per year	1MT	1MT	Cost savings
Electrolyser capacity	6.3GW	4.7GW	-
Renewables capacity	12GW	8.9GW	\$6.8bn
Electricity costs (\$55/MWh) Per year	\$2.75bn	\$2.0bn	\$0.75bn

26% renewable capex reduction of \$6.8bn

26% opex reduction of \$14bn

over 20-year project lifetime

Assumptions used in calculations: Electrolyser System Installed CapEx: \$600/kW; Wind:Solar ratio: 67:33; Renewable Capacity factor: 53%; Electrolyser Capacity Factor: 90%; *References for renewable energy cost and efficiencies: Renewable power generation costs in 2021 (irena.org); Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5C climate goal (irena.org)

Ceres SOFC efficient and fuel agnostic

Fuels supported

Heat from SOFC used to improve efficiency with thermal integration

Impurities in hydrogen and reformates can be tolerated to a high level

ceres

Q&As

Engagement through the hydrogen value chain

Tony Cochrane

Asset-light, licensing business model for SOFC and SOEC

Hydrogen end-use demand by region

MT hydrogen p.a.

Electrolysis builds on mature fuel cell capability

Both uses of our core technology have the:

Same core cell and stack technology platform Same IP
portfolio
covering SOEC
and SOFC

Same
manufacturing
process and
supply chain

Same
partnering
model providing
scale

Ceres partners building manufacturing scale globally

Same partnership progression as fuel cells

1. Joint product development Engineering services

2. Licence: system/ manufacturing Fees for tech transfer

3. Royalties from products sold Royalties per kW

Growing visibility of future royalty revenue

ceres

Q&As

